Food: How Altered? By Jennifer... - Wissenschaft und Deutsch (on Hiatus)
Food: How Altered?
By Jennifer Ackerman
Republished from the pages of National Geographic magazine

Scientists continue to find new ways to insert genes for specific traits into plant and animal DNA. A field of promise—and a subject of debate—genetic engineering is changing the food we eat and the world we live in.
In the brave new world of genetic engineering, Dean DellaPenna envisions this cornucopia: tomatoes and broccoli bursting with cancer-fighting chemicals and vitamin-enhanced crops of rice, sweet potatoes, and cassava to help nourish the poor. He sees wheat, soy, and peanuts free of allergens; bananas that deliver vaccines; and vegetable oils so loaded with therapeutic ingredients that doctors “prescribe” them for patients at risk for cancer and heart disease. A plant biochemist at Michigan State University, DellaPenna believes that genetically engineered foods are the key to the next wave of advances in agriculture and health.
While DellaPenna and many others see great potential in the products of this new biotechnology, some see uncertainty, even danger. Critics fear that genetically engineered products are being rushed to market before their effects are fully understood. Anxiety has been fueled by reports of taco shells contaminated with genetically engineered corn not approved for human consumption; the potential spread of noxious “superweeds” spawned by genes picked up from engineered crops; and possible harmful effects of biotech corn pollen on monarch butterflies.
In North America and Europe the value and impact of genetically engineered food crops have become subjects of intense debate, provoking reactions from unbridled optimism to fervent political opposition.
Just what are genetically engineered foods, and who is eating them? What do we know about their benefits—and their risks? What effect might engineered plants have on the environment and on agricultural practices around the world? Can they help feed and preserve the health of the Earth’s burgeoning population?
Q: Who’s eating biotech foods?A: In all likelihood, you are.
Most people in the United States don’t realize that they’ve been eating genetically engineered foods since the mid-1990s. More than 60 percent of all processed foods on U.S. supermarket shelves—including pizza, chips, cookies, ice cream, salad dressing, corn syrup, and baking powder—contain ingredients from engineered soybeans, corn, or canola.
In the past decade or so, the biotech plants that go into these processed foods have leaped from hothouse oddities to crops planted on a massive scale—on 130 million acres (52.6 million hectares) in 13 countries, among them Argentina, Canada, China, South Africa, Australia, Germany, and Spain. On U.S. farmland, acreage planted with genetically engineered crops jumped nearly 25-fold from 3.6 million acres (1.5 million hectares) in 1996 to 88.2 million acres (35.7 million hectares) in 2001. More than 50 different “designer” crops have passed through a federal review process, and about a hundred more are undergoing field trials.
read more

Food: How Altered?


By Jennifer Ackerman

Republished from the pages of National Geographic magazine

Scientists continue to find new ways to insert genes for specific traits into plant and animal DNA. A field of promise—and a subject of debate—genetic engineering is changing the food we eat and the world we live in.

In the brave new world of genetic engineering, Dean DellaPenna envisions this cornucopia: tomatoes and broccoli bursting with cancer-fighting chemicals and vitamin-enhanced crops of rice, sweet potatoes, and cassava to help nourish the poor. He sees wheat, soy, and peanuts free of allergens; bananas that deliver vaccines; and vegetable oils so loaded with therapeutic ingredients that doctors “prescribe” them for patients at risk for cancer and heart disease. A plant biochemist at Michigan State University, DellaPenna believes that genetically engineered foods are the key to the next wave of advances in agriculture and health.

While DellaPenna and many others see great potential in the products of this new biotechnology, some see uncertainty, even danger. Critics fear that genetically engineered products are being rushed to market before their effects are fully understood. Anxiety has been fueled by reports of taco shells contaminated with genetically engineered corn not approved for human consumption; the potential spread of noxious “superweeds” spawned by genes picked up from engineered crops; and possible harmful effects of biotech corn pollen on monarch butterflies.

In North America and Europe the value and impact of genetically engineered food crops have become subjects of intense debate, provoking reactions from unbridled optimism to fervent political opposition.

Just what are genetically engineered foods, and who is eating them? What do we know about their benefits—and their risks? What effect might engineered plants have on the environment and on agricultural practices around the world? Can they help feed and preserve the health of the Earth’s burgeoning population?

Q: Who’s eating biotech foods?
A: In all likelihood, you are.

Most people in the United States don’t realize that they’ve been eating genetically engineered foods since the mid-1990s. More than 60 percent of all processed foods on U.S. supermarket shelves—including pizza, chips, cookies, ice cream, salad dressing, corn syrup, and baking powder—contain ingredients from engineered soybeans, corn, or canola.

In the past decade or so, the biotech plants that go into these processed foods have leaped from hothouse oddities to crops planted on a massive scale—on 130 million acres (52.6 million hectares) in 13 countries, among them Argentina, Canada, China, South Africa, Australia, Germany, and Spain. On U.S. farmland, acreage planted with genetically engineered crops jumped nearly 25-fold from 3.6 million acres (1.5 million hectares) in 1996 to 88.2 million acres (35.7 million hectares) in 2001. More than 50 different “designer” crops have passed through a federal review process, and about a hundred more are undergoing field trials.

read more

  1. comolafl0r reblogged this from scienceyoucanlove
  2. clarissasauter reblogged this from scienceyoucanlove
  3. sleepingtators reblogged this from scienceyoucanlove
  4. felinedatabase reblogged this from scienceyoucanlove
  5. knowledge-yay reblogged this from scienceyoucanlove
  6. archaean reblogged this from molecularlifesciences
  7. caromander reblogged this from molecularlifesciences
  8. korchma-taras-bulba-new-york-usa reblogged this from scienceyoucanlove
  9. jsumajr1991 reblogged this from scienceyoucanlove
  10. peapodkid reblogged this from molecularlifesciences
  11. gotchalksr reblogged this from vacantsees
  12. molecularlifesciences reblogged this from scienceyoucanlove
  13. irrealfriend reblogged this from scienceyoucanlove
  14. larissapedraza reblogged this from scienceyoucanlove
  15. rebelliving reblogged this from scienceyoucanlove
  16. lifeisabouteatingstrangefruits reblogged this from scienceyoucanlove
  17. thealyssavill reblogged this from scienceyoucanlove
  18. ninjascientist reblogged this from scienceyoucanlove
  19. hotdogcephalopod reblogged this from scienceyoucanlove
  20. artiminer reblogged this from scienceyoucanlove